Sabtu, 4 Ogos 2012

COMPUTER HISTORY AND GENERATIONS


HISTORY OF COMPUTERS



This is a searchable directory about the history of computers, computing and a timeline of the history of computers and early calculating machines has been included. Our timeline includes developments in the 1600's and their impact on computing. The development of the modern day computer was the result of advances in technologies and man's need to quantify. (The abacus was one of the first counting machines. Calculating machines were sold commercially before the advent of steel manufacturing technologies. Papyrus was something to write on, before we had paper. Writing was a way to record mathematical calculations.) This history of computers site includes the names of early pioneers of math and computing and links to related sites for further study. A new "Timeline of the History of Computers and Related Technologies" has been added. This site was designed to be used by students assigned topics about the history of computers and computing. Original articles are footnoted and related links are included. One important purpose of this Web page, is to debunk myths some people create, such as "we have computers because of the military" (Not true). We have computers because man wanted to quantify as early as the ancient Chinese Dynasties, when they created the abacus and used it for calculating, and adding and subtracting in particular... Babbage and Lovelace were "programming" machines as early as the 1800's before any military computer in this country. 1801 was the creation of the Jacquard loom which used "punch cards". Cathode Ray Tubes (CRTs) have been around since 1885 and the US gov't first used a computer in the 1950's. Great Britain's COLOSSUS was developed before the ENGIGMA, so people trying to perpetuate the importance of the US military in the development of computer technologies is doing a disservice to students. Electronics and related computer development, and the invention of the transistor were all independent of military intent. If anything, even the totalisator machines were created for statistical purposes and have been used for horse racing, not rocket science. I love my Mac, and it has no military background that I am aware of. Military computers did not have integrated circuits like PC computer chips either... Stop saying computer development was military in origin... simply can't back it up with fact. Yes, the military also had old computers, just like my Commodore was old... but they weren't related... no tubes in my commodore, that was different technology altogether than a military

GENERATIONS

First Generation (1940-1956) Vacuum Tubes

The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.
First generation computers relied on machine language, the lowest-level programming language understood by computers, to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts.
The UNIVAC and ENIAC computers are examples of first-generation computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951.

Second Generation (1956-1963) Transistors

Transistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.
Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. High-level programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.
The first computers of this generation were developed for the atomic energy industry.

Third Generation (1964-1971) Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers.
Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitors and interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors.

Fourth Generation (1971-Present) Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer—from the central processing unit and memory to input/output controls—on a single chip.
In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors.
As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handheld devices.

Fifth Generation (Present and Beyond) Artificial Intelligence


Fifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.onster computer with vacuum tubes... mechanical relays... ta dah... that was hot stuff in that age.

Tiada ulasan:

Catat Ulasan